Math Olympiad, Indian Statistical Institute, Chennai Mathematical Institute and Institute of Mathematics and Applications aspirants will find useful mathematics in this blog. Visit www dot cheenta dot com (our official website).

Monday 3 December 2012

RMO 2012 solution to Question No. 3


3. Let a and b are positive real numbers such that a+b = 1. Prove that \(a^a  b^b + a^b b^a \le 1\)

Solution:

We use the weighted A.M.-G.M. inequality which states that:

\(\frac {w_1 a_1 + w_2 a_2 }{w_1 + w_2} \ge ({a_1}^{w_1} {a_2}^{w_2})^{\frac{1}{w_1 + w_2}} \)

First we put \(w_1 = a , a_1 = a , w_2 = b, a_2 = b \)
Hence we get \(\frac {a a + b b }{a + b} \ge (a^a b^b)^{\frac{1}{a + b}} \)
As a+b =1
we have \(a^2 + b^2 \ge (a^a b^b) \) ....(1)

Similarly we put \(w_1 = a , a_1 = b , w_2 = b, a_2 = a \)

Hence we get \(\frac {a b + b a }{a + b} \ge (b^a a^b)^{\frac{1}{a + b}} \)
As a+b =1
we have \(2ab \ge (b^a a^b) \) ....(2)

Adding (1) and (2) we have 

\(a^2 + b^2 + 2ab \ge a^a b^b + b^a a^b \)
=> \((a+b)^2 \ge a^a b^b + b^a a^b \)
As a+b =1 we have the desired inequality
\(1 \ge a^a b^b + b^a a^b \).

No comments:

Post a Comment