Math Olympiad, Indian Statistical Institute, Chennai Mathematical Institute and Institute of Mathematics and Applications aspirants will find useful mathematics in this blog. Visit www dot cheenta dot com (our official website).

Tuesday 25 October 2011

a nice problem from ISI 10+2

Compute I = \(\int_e^{e^4}\sqrt{log(x)}dx\) if it is given that \(\int _1^2 e^{t^2} dt = \alpha \)

I = \([x \sqrt{log(x)}]_e^{e^4} - \int_e^{e^4} x \frac{1}{2 \sqrt{log(x)}} \frac {1}{x} dx \)
= \([e^4 \sqrt {log_e e^4} - e \sqrt {log _e e}] - \frac{1}{2} \int_e^{e^4}\frac{1}{\sqrt{log(x)}} dx \)
= \(2 e^4 - e - \frac{1}{2} \int_e^{e^4}\frac{1}{\sqrt{log(x)}} dx \)

let log(x) = \(t^2\)

x =\(e^{t^2}\)

dx = 2t \(e^{t^2}\) dt

Thus I = \(2 e^4 - e - \frac{1}{2} \int_e^{e^4}\frac{1}{\sqrt{log(x)}} dx \)

=  \(2 e^4 - e - \frac{1}{2} \int _1^2 \frac {1}{t} 2 t e^{t^2} dt \)
=  \(2 e^4 - e -  \int _1^2 e^{t^2} dt \)
=  \(2 e^4 - e - \alpha \)

No comments:

Post a Comment